Multivariate Stochastic Volatility with Bayesian Dynamic Linear Models
نویسنده
چکیده
This paper develops a Bayesian procedure for estimation and forecasting of the volatility of multivariate time series. The foundation of this work is the matrix-variate dynamic linear model, for the volatility of which we adopt a multiplicative stochastic evolution, using Wishart and singular multivariate beta distributions. A diagonal matrix of discount factors is employed in order to discount the variances element by element and therefore allowing a flexible and pragmatic variance modelling approach. Diagnostic tests and sequential model monitoring are discussed in some detail. The proposed estimation theory is applied to a four-dimensional time series, comprising spot prices of aluminium, copper, lead and zinc of the London metal exchange. The empirical findings suggest that the proposed Bayesian procedure can be effectively applied to financial data, overcoming many of the disadvantages of existing volatility models. Some key words: Time series, volatility, multivariate, dynamic linear model, Bayesian, forecasting, state space, Kalman filter, GARCH, London metal exchange.
منابع مشابه
Multivariate stochastic volatility using state space models
A Bayesian procedure is developed for multivariate stochastic volatility, using state space models. An autoregressive model for the log-returns is employed. We generalize the inverted Wishart distribution to allow for different correlation structure between the observation and state innovation vectors and we extend the convolution between the Wishart and the multivariate singular beta distribut...
متن کاملComparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملBayesian Dynamic Factor Models and Variance Matrix Discounting for Portfolio Allocation
We discuss the development of dynamic factor models for multivariate nancial time series, and the incorporation of stochastic volatility components for latent factor processes. Bayesian inference and computation is developed and explored in a study of the dynamic factor structure of daily spot exchange rates for a selection of international currencies. The models are direct generalisations of u...
متن کاملSimple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models
In this paper we consider a variety of procedures for numerical statistical inference in the family of univariate and multivariate stable distributions. In connection with univariate distributions (i) we provide approximations by finite location-scale mixtures and (ii) versions of approximate Bayesian computation (ABC) using the characteristic function and the asymptotic form of the likelihood ...
متن کاملBayesian Dynamic Factor
We discuss the development of dynamic factor models for multivariate nancial time series, and the incorporation of stochastic volatility components for latent factor processes. Bayesian inference and computation is developed and explored in a study of the dynamic factor structure of daily spot exchange rates for a selection of international currencies. The models are direct gen-eralisations of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008